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Abstract 
A problem of using mixture-of-Gaussian models 

for  unsupervised texture  segmentation  is  that “mul- 
timodal”  textures  (such as  can often be encountered 
in natural images) cannot be well represented by a 
single Gaussian  cluster. We propose a divide-and- 
conquer method that groups together  Gaussian  clusters 
(estimated via Expectation Maximization)  into homo- 
geneous texture  classes. This method allows to succes- 
fully segment even  rather complex textures, as demon- 
strated by  experimental tests  on natural images. 

1 Introduction 
Algorithms for image  segmentation  can  be  roughly 

divided  into  two  categories:  those  that use statistical 
models for describing  the  behavior of visual  features, 
and  those  that  only  require  some  measure of “similar- 
ity” between features [10][12]. Recent graph  cutting 
techniques [11][8] are  an  instance of the  latter.  These 
algorithms  partition  a  graph  describing  the  interrela- 
tion between image pixels by  minimizing  a  suitable 
functional of the  related “affinity matrix”.  The en- 
try of the affinity matrix  at position (m,  n )  is a  com- 
bination of the difference in appearance between the 
m-th  and  the  n-th pixels and of their  distance in the 
image  plane.  Thus,  these  approaches seamlessly inte- 
grate  spatial  and  appearance coherence in a  elegant 
and  general  framework.  Unfortunately,  handling rela- 
tional  graphs  built  from  all  image pixels is very chal- 
lenging in terms of memory  and  computation power 
even for moderate size images  (e.g., 200 x 200 pixels), 
therefore  heavy  image  subsampling is in order. 

Statistical  techniques  stand on the  other  side of the 
spectrum’.  They  assume  that  image  features obey  a 
probabilistic  model,  and  approach  segmentation as a 
general  clustering  problem,  drawing on classical re- 

‘Statistical  and graph-theoretic  techniques are not necessar- 
ily disjoint. For example,  one may use knowledge about class 
statistics  to design more effective distance metrics for use in the 
affinity matrix. 

sults of pattern  recognition. Bayesian  approaches 
maximize  the  probability  that  a  point x character- 
ized  by the  image  feature c ( z )  belongs to  the clus- 
ter j ,  i.e., P ( j l c ( z ) ) .  Interdependence  among  nearby 
pixels is taken  into  account, for example, by means 
of Markov Random Field  models. An advantage of 
statistical  techniques is that  the final segmentation is 
“soft”, being  expressed in terms of posterior  proba- 
bilities.  This  facilitates  integration  with  other  visual 
features  and/or  with ( I  priori, “supervised”  informa- 
tion [6]. 

This  paper proposes  a simple  statistical  parametric 
technique for texture  segmentation.  The  statistical 
description of textures  has received  much attention in 
recent  years. Texture  features c ( z )  are  typically ex- 
tracted  from  the  output of a  set of scaled/oriented 
filters,  which  are  supposed to  capture local salient in- 
formation  in  the  neighborhood of each image  point. 
Several non-parametric  techniques  can  be  found  in  the 
literature for estimating  the  marginal  densities p ( c ( x ) )  
in the case of homogeneous  textures [9][2][5]. Para- 
metric  mixture  models  are  the  framework of choice for 
segmentation.  These  models  assume  that  a  feature c 
is generated by one of N possible  processes (“com- 
ponents”).  The  probability  density  function of c can 
thus  be expressed  by  a mixture  distribution 

N 

P ( C )  = P(j)P(Clj)  (1) 
j = 1  

where p(c1j) is the  conditional likelihood of the  feature 
c generated by the  component j and P ( j )  is the  prior 
probability of the  component j (called mixing  param- 
eter). The posterior  probabilities P ( j l c ( x ) )  are de- 
rived straightforwardly  from  the  mixture  model using 
Bayes’ rule,  and  are used for the  final  segmentation. 
Note that each component of the  model  corresponds 
to exactly  one  image  segment’. 

21n the  context of this paper, image segments are not neces- 
sarily (and usually are not) connected. 
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Mixture  models owe their  popularity in part to the 
existence of an efficient technique (the  Expectation- 
Maximization  algorithm) for the  maximum likelihood 
parameters  estimation [7]. In  its  simplest  formulation, 
the EM algorithm relies on  two  hypotheses: 1) a  suit- 
able  model for the  conditional  likelihoods is known, 
and  2)  the observed samples  are  statistically  indepen- 
dent.  Neither of these  hypotheses is verified in typ- 
ical textures.  The  problem of sample  independence3 
is fairly well understood;  extensions of the EM algo- 
rithm  that use MRF modeling of the class label  distri- 
bution have  been  proposed [16][15]. In this  paper we 
tackle  the  first  problem,  the  determination of a  statis- 
tical  model for feature  generation  within  each  texture 
class,  originating  our  argument  from  the  observation 
that  simple  Gaussian  models  are  inadequate  to de- 
scribe  “multimodal”  textures,  such  as  can be  often 
encountered in practice. 

Mixture of Gaussians  are  the  most  common in- 
stance of mixture  models,  one reason  being that Gaus- 
sian  conditional  likelihoods allow for the E- and M- 
steps of the EM algorithm  to be  solved in closed  form 
[7]. Each Gaussian  cluster  represents  a  “mode” of the 
mixture  distribution. Malik et  al. [3] call  the  cluster 
centers  “textons”  and use them for compact  texture 
representation  (via vector quantization). Our main 
point here is that  it is often  necessary to use more  than 
one  Gaussian  cluster  to  represent  an  homogeneous tex- 
ture  feature  distribut,ion. For example, consider the 
image of Figure l ( a ) ,  composed by the  juxtaposition* 
of a  Brodatz  texture  and of the  same  texture  rotated 
by 45’. In  this  simple  experiment, we used  a bank 
of Gabor  filters at  four  orientations to  extract  texture 
features.  It is easy to convince  oneself that  the  feature 
distribution in each  texture  patch is bimodal,  due  to 
the  two presence of two  principal  orientations.  There- 
fore, a 2-components  mixture-of-Gaussians  model fails 
to represent  the whole  scene  giving, for example,  the 
incorrect  segmentation of Figure l(b)  (note  that,  due 
to  the  symmetry of the  distributions in orientation 
space,  there  are  other possible stationary  points  the 
algorithm  may converge to, including  the  “correct” 
one). 

To  deal  with  multimodal  textures like the  one in 
Figure 1 (a),  we propose  an  unsupervised  divide-and- 
conquer  strategy.  First,  extract a suitable  number of 
mixture  components using the EM algorithm;  then, 

3There are actually two kinds of dependency, one concerning 
the underlying class label  distribution,  and the other concerning 
the feature  distributions  within  each  class[l6]. 

4 0 f  course, one may argue that four homogeneous  textures 
can  be  seen in the scene,  depending on  the scale of the obser- 
vation window used. 

Figure 1: (a): Original  image. (b) Incorrect  segmenta- 
tion using  a mixture of tlwo Gaussians.  (c)  Segmenta- 
tion  with  six  Gaussian  clusters. (d)  Segmentation  into 
two  texture classes, each  one of which is represented 
by a  mixture of three  Gaussian  clusters. 

group  together  those  clusters which are likely to be- 
long to the  same  texture. For example, in Figure l ( ~ )  
we show the EM segmentation using six  Gaussian  com- 
ponents. By suitably  grouping  these  components  into 
two sets, we obtain  the  correct  segmentation of Fig- 
ure l(d).  In  this  case, each texture is described by a 
mixture of three  Gaussians. 

How can we estimate  the  correct  assignments 
cluster-texture?  Our  algorithm  det,ermines a cost 
function of cluster  grouping  that keeps spatial  coher- 
ence into  account. A simple,  non-iterative  technique 
allows  us to determine  the  cluster  groupings  that  min- 
imize  such function,  and  the final Bayesian  assignment 
is performed  based  on  the new combined  posterior dis- 
tribution.  Results  on  natural  textured scene  show the 
effectiveness of the proposed method. 

2 Multimodal texture segmentation 
2.1 Problem  statement 

Our  strategy for segmenting  multimodal  textures 
is based on  “grouping  together”  some of the  com- 
ponents of a  given mixture  model. More precisely, 
consider a partition (11, . . . , I&}  of the  discrete set 
I = (1,. . . , N } .  Let 

P ( k )  = P ( i )  



We can  rewrite (1) as 

A 
P ( C )  = & W c l k )  (3) 

k = l  

The index k in (3) labels  the different texture classes 
in the  scene;  the  index i in (2) enumerates  the clus- 
ters  within each texture class. A feature c is as- 
signed to  the  texture k that maximizes P(k)$(c lk )  = 
CiElk P(i)p(cl i ) .  It is important  to  note  that, in gen- 
eral,  the pixels that  are assigned to a  class t by means 
of (3) are not the  union of the  sets of pixels assigned to 
the classes {i  E I k } :  grouping  together  clusters  deter- 
mines new Bayesian assignments  that  are  not  trivially 
derived  from  the  original  ones. 

As anticipated in the  Introduction, we will deter- 
mine  the  groupings  in (3) by exploiting  the  spatial 
coherence of the class assignment  function.  More 
precisely, we observe that  the posterior  probabilities 
Pk(i l Ic(x))  and Pk(i21c(z)) for two  clusters il and i 2  

belonging to  the  same  texture k are  typically spatially 
correlated. They  can  assume high  values (5  1) only 
in image  areas  corresponding to  the  same  texture; for 
homogeneous  textures,  it  is  reasonable to assume that, 
within  a “window of observability” of suitable  scale, 
we will normally find both pixels assigned to cluster 
il and pixels assigned to cluster i z .  This  notion is 
exploited  in  the  context of the recently  proposed max- 
imum descriptiveness criterion [6] for grouping “re- 
dundant”  clusters  in  a  mixture  model. We first dis- 
cuss  the  maximum  descriptiveness  criterion, referring 
the  reader  to [6] for more  details. We then show its 
application in the  context of this work. 
2.2 Model  descriptiveness 

Consider  a  mixture  model  with  density p(c )  ex- 
pressed by (1). The descriptiveness D of the  model 
[6] is defined  by 

N 

D = Dj , Dj = / p ( c / j ) P ( j l c ) d c  
j=1 J 

where the  posterior  probabilities P(j1c) are derived 
from (1) using  Bayes’  rule: P(j1c) = P( j )p (c l j ) /p (c ) .  
Let  us examine each term of the  sum  in (4). The j -  
th cluster “describes”  each feature c by means of the 
conditional  likelihood p(c1j ) .  The posterior  probabil- 
ity P( j l c )  specifies in a “soft” fashion  which  features 
are  actually assigned by the  model to the  j-th  cluster. 
Thus,  the  integrals  in  the  sum  determine how  well each 
cluster  describes  the  features that  are assigned to  it. 
It is easily seen that models  with  “hard”  assignment 
rules  have  the  highest  descriptiveness  (which  can  only 

be less than or equal to N ) .  Models with highly  over- 
lapping  densities p(c1j) have  smaller  descriptiveness 
for the  same  number of classes. The lowest  value of 
the  descriptiveness (D=l) is achieved  when  all of the 
conditional likelihoods are  identical. 

A very useful property of the  descriptiveness is that 
it  can  be easily estimated:  a  simple  application of 
Bayes’  rule  proves the following identity: 

where E[.] is the  expectation  computed  with  respect  to 
the  density p(c) .  The  numerator of each term (5) can 
thus  be  estimated by simply  averaging P ( j l c ( ~ ) ) ~  over 
the  image.  The  denumerator is estimated by averaging 
P ( j l c ( z ) )  over the  image. 

For our  purposes,  the  descriptiveness of a  model is 
not used by itself; it is its variation when  two or more 
clusters  are  grouped  together  which is of interest to us. 
Suppose that a new model  is  generated by grouping 
two  clusters (say, clusters i and j) into  a new “super- 
cluster” i U j according to  the following rules: 

P ( i U j )  = P ( i ) +  P ( j )  
P ( i  u j IC) = P (ilc) + P ( j lc )  
P (cli u j )  = P ( C b )  * + P ( . I d  P ( j  1 

P ( i ) + P ( j )  
(6) 

Note that  the  conditional likelihood  defined in the  last 
row  of (6) is such that  the  density p(c)  defined  by the 
model  does  not  change:  our  grouping  operation  (which 
is equivalent to (3)) is purely  formal. However, the 
model  descriptiveness D will change  (in  general)  as 
an effect of cluster  grouping.  Indeed,  it  can  be shown 
that  the model  descriptiveness D may only  decrease 
or remain  unchanged  when  two or more  clusters  are 
grouped  together.  The  descriptiveness  decreases  the 
most  when the  grouping involves clusters  with well- 
separated  conditional  distributions, while  highly over- 
lapping  distributions  can  be  grouped  with  little de- 
scriptiveness loss. 

To decide which clusters  should  be  grouped to- 
gether  into a super-cluster as by (6) (or (3)) in or- 
der to reduce the  number of texture classes, we may 
look at  the corresponding  model  descriptiveness  decre- 
ment AD. The  intuition is that  clusters which are 
highly  overlapping in feature  space  (small AD) are  the 
“safest” choice for grouping.  Thus, we should  choose 
the  cluster  grouping scheme that yields the  smallest 
value of AD. We will call  this  strategy  the max- 
imum descriptiveness criterion. A fast  sub-optimal 
technique for minimizing  the  descriptiveness loss over 
cluster  groupings  has  been  proposed  in [6]. This al- 



gorithm greedily groups  two  clusters at  a  time, each 
time  minimizing A D .  

There is an  interesting  interpretation of the  descrip 
tiveness which will be useful for our work.  Suppose 
we are  grouping  two  clusters of indices i and j .  Then, 
from (5) and (6) we have that 

The  last  term in this  sum is the  cross-correlation be- 
tween the two distributions,  normalized  with  respect 
to  the average of the  corresponding  priors.  Thus, for 
given  cluster  descriptiveness Di ,Dj and  prior  probabil- 
ities P ( i ) , P ( j ) ,  the  two  clusters will determine  a  large 
A D  when grouped  together if the  two  corresponding 
distributions  are  uncorrelated. Since  these distribu- 
tions  are  actually  a  function of the  spatial  position 2 

of the  features c ( z ) ,  we may use the  signal process- 
ing  definition of cross-correlation  as  a  function of the 
displacement X: 

and  rewrite  the  last  term of (7) as - 2 C , j ( O )  
P( i )+P( j )  

2.2.1 Comparison with mean entropy 

It is tempting  to  compare  the  maximum  descriptive- 
ness criterion  with  an  entropy-based  strategy. We de- 
fine the  mean  entropy of the  mixture  model (1) as 

where  again the  expectation is computed  with respect 
to  the  distribution p ( c ) .  The descriptiveness of a 
model is small when the  conditional  distributions  are 
heavily  overlapping; in such  conditions,  the  mean en- 
tropy  can be  expected  to  be  large (< log N ) .  Fur- 
thermore,  it  can  be shown that  the  mean  entropy  can 
only  decrease or remain  unchanged  as  a  consequence 
of cluster  grouping.  The  equivalent of descriptive- 
ness maximization would then be  mean  entropy  mini- 
mization. However, this  mean  entropy-based  strategy 
won't  work, as  simple  experiments show. We conjec- 
ture  that  the  root of the  problem is in the  fact  that 
(9) lacks the  normalization  term 2 of (5). Normal- 
ization  with  respect  to  the  prior  cluster  probability 
is very important:  it  ensures  that  clusters won't  get 
grouped  away  just  because  they  correspond  to  small 
segments in the  image,  as is the  case  with  the  mean 
entropy-based  method. 

P ( j  ) 

features 
Texture 

Z"-l 

Cluster 
grouping 

Figure 2: Scheme of our  strategy for cluster  grouping. 
The images in the  scheme refer to Figure 1. 

2.3 Cluster-texture  assignment 
Our  goal is to find a  criterion that tells  us  when 

two  clusters  belong to  the  same  texture, so that we 
can  group  them  together  as  in (3).  The  maximum de- 
scriptiveness  criterion  described in the  previous sec- 
tion is not helpful if applied  directly to  the posterior 
probabilities P(j1c): two different clusters  belonging 
to the  same  texture class may  be well separated in 
feature  space, as in the case of Figure 1. Instead, we 
propose to  apply  the  same  criterion  to  the spatially 
filtered versions of the  posterior  probabilities. 

The  intuition  behind  this  strategy is the following. 
As observed earlier, we expect that  the posterior dis- 
tributions for different clusters  belonging to  the  same 
texture  should be spatially  correlated. By spatially 
smoothing  these  distributions, we expect that a  point 
that was  assigned with high probability  to  just  one 
cluster will  now be  softly  assigned to a  number of clus- 
ters belonging to  the  same  texture.  Cluster  grouping 
is then  determined by applying  the  maximum descrip- 
tiveness algorithm to  the  smoothed  posterior  distribu- 
tions.  Note  that  this  procedure is used  only to find 
the  correspondence  cluster-texture:  the final segmen- 
tation is operated using the  model (3) ,  i.e., based  on 



.* 

non-filtered distributions (see Figure 2).  
We  now give  a more  thorough  justification of our 

method. Let g(z)  be  an  isotropic  Gaussian kernel 
of suitable  scale u, normalized to unit  area. Let 
P(jlz) = P(j lc( t ) )g(z  - t )  dt be  the filtered version 
of the  posterior  distribution P ( j l c ( z ) )  (we dropped 
the  dependency on c because now P ( j l x )  is a  function 
of a whole  ensemble of features in a  neighborhood of 
z). Since g(z)  has  unit  area,  it is easily proved that 
P(jlz) for 1 5 j 5 N is still a mass  distribut,ion for 
each 2 .  Furthermore, P ( j )  = E [P(jlz)] = P ( j ) .  

Now, consider  the  cross-correlation  function 

C i j ( X )  = E [P( i l z )P( j l (a:  + X ) ]  (10) 

It is easy to prove that 

where C i j ( z )  was defined in (8) and g(z) = J g ( t ) g ( t -  
z)dz (note  that g(z) is a  unit-area  Gaussian ker- 
nel with  standard  deviat,ion a = c~ /2 ) .  Therefore, 
C i j ( 0 )  is a  weighted  average of the values of the cross- 
correlation  between  the  i-th  and  the j-th posterior 
distributions  within  a  neighborhood of radius  propor- 
tional to u/2 (which we will call  the observation win- 
dow). 

Now consider the  decrement of descriptiveness AD 
consequent to  grouping two clusters i and j after  spa- 
tial  smoothing: 

From (12) we maintain  that, for given P(i lc(z)) ,  
P ( j l c ( z ) )  and  priors P ( i ) , P ( j ) ,  the value A D  depends 
on  t,he  degree of local  spatial  correlation between the 
two  posterior  distributions.  Thus,  the  maximum de- 
scriptiveness  algorithm  applied to  the  smoothed  distri- 
butions will correctly  determine which cluster  poste- 
rior distributions  best  correlate,  and will group  them 
together  into  common  texture classes. An instance 
of application of the proposed algorithm is shown in 
Figure l (d) ;  more  examples  are  described in the next 
section. 
2.4 Experiments 

We present  here  the  segmentation  results using  our 
method  on  three real-world textured  images:  the “Ze- 
bras”  image  (Figure  3(a)),  the (‘Cheeta”  image (Figure 
4(a))  and  the  “Pebbles”  image  (Figure  5(a)). 

The vectors  formed by the  magnitude of the  out- 
put of complex  Gabor  filters at tahree scales and  four 
orientations have  been  used as texture  features.  The 

Figure 3: (a): “Zebras” image.  (b):  Segmentation us- 
ing  three  clusters.  (c)  Segmentation using  eight clus- 
ters.  (d):  Segmentation  into  thee  texture classes by 
cluster  grouping. 

Figure  4: (a):  “Cheeta”  image. (b): Segmentation us- 
ing three  clusters.  (c)  Segmentation  using  eight clus- 
ters.  (d):  Segmentation  into  thee  texture classes by 
cluster  grouping. 



Figure  5:  (a):  “Pebbles”  image.  ((b):  Segmentation 
using  two  clusters. (c) Segmentation using  eight clus- 
ters. (d):  Segmentation  into  two  texture classes by 
cluster  grouping. 

Gaussian  filter used to  smooth  the posterior  distri- 
butions for cluster-texture  assignment  had  standard 
deviat8ion o = 40, seven times  larger  than  the  stan- 
dard  deviation of the  Gaussian envelope of the  largest 
Gabor  filter  used.  In  both  cases, we started  with  a 
mixture  model  composed by eight  Gaussian  clusters. 
This  number  has been  chosen arbitrarily;  validation 
mechanisms for selecting  the  “right”  number of clus- 
ters  can be  found in the  literature [13]. 

The EM algorithm was bootstraped  with  initial 
parameter values determined by a  previous  I<-means 
clustering,  and was stopped  after twenty iterations. 
In  passing, we notice that increasing  the  number of 
clusters reduces the risk of missing  global  minima in 
the EM iterations.  A  simple  post-processing  technique 
[16] was used to enforce spatial coherence on  the re- 
sulting  multimodal  posterior  distributions.  This algo- 
rithm is in essence  a “soft” version of Besag’s Iterated 
Conditional Modes [l]; its  relation to  the  mean field 
theory is discussed in [17]. 

The  segmentations  relative to  the original  cluster- 
ings  into  eight  clusters  are shown in  Figures  3(c),  4(c) 
and  5(c). After cluster  grouping, we obtain  the seg- 
mentations of Figures  3(d)  and  4(d)  (three  texture 
classes),  and  5(d)  (two  texture  classes). For compari- 
son,  the  direct EM segmentation  into  the  same  num- 
ber of classes is shown in Figures 3(b),  4(b)  and  5(b). 
In  the case of the “Zebras” image,  our  algorithm SUC- 
cesfully segmented  the  striped regions  corresponding 

to  the zebras (5 clusters),  and  allocated  one  texture 
class (2 clusters) to  the grass  and  the  large  bush. Di- 
rect EM clustering  fails to segment  the  zebras  into one 
class due  to  the  large  variance in orientation  and  scale 
corresponding to  the  distincitve  stripes. In the  case 
of the  “Cheeta”  images, we notice that  the  shapes of 
the  foreground  branch  and of the  cheeta have  been 
identified (although  not  perfectly). Several small  ar- 
eas  around  the  larger  tree  branch  are misclassified due 
to  their  similarity  with  the  polka-dot  texture on the 
cheeta’s  skin.  More  remarkably,  the  cluttered  back- 
ground  has been  segmented  almost  completely  into 
just  one  class,  the  union of six  distinct  clusters.  In 
the case of the“Pebb1es” image,  one  texture class (1 
cluster)  has been  allocated to  the  characteristic  surface 
of some  flat  rocks in the scene. Note that  the “back- 
ground”  texture class contains  clusters  corresponding 
to  dark  and  bright  areas as well as to edge areas. 

In  terms of implementation  complexity, we observe 
that  the bulk of the  computation is due  to  the EM iter- 
ations  (for which,  however,  acceleration method  exist 
[7]). The  determination of the  cluster-texture assign- 
ments  takes  a  proportionally negligible time, using the 
greedy maximum  descriptiveness  strategy of [6]. 

3 Conclusions and discussion 
We presented  a  divide-and-conquer  strategy for tex- 

ture  segmentation.  The  behavior of the  texture fea- 
tures in the scene is first modeled by a  number of 
Gaussian  clusters,  estimated  via  Expectation Maxi- 
mization.  Then, selected cluster  sets  are  grouped  to- 
gether to form  texture classes. Spatial  correlation of 
the  posterior  cluster  distributions is at  the basis of the 
cluster  grouping  criterion.  Despite  its  simplicity,  this 
algorithm  can  model even complex  and  multimodal 
distributions,  typical of natural  cutdoor  images. 

It is instructive to compare  our  method  with  other 
statistic-based  techniques which perform  clustering  on 
parameter vectors obtained by local  statistical  analy- 
sis.  Indeed,  some of the  earliest filter-based segmen- 
tation  algorithms [14][4] estimate  the  local  variance 
of the  analysis filter outputs  (by  performing  squaring 
followed  by spatial  smoothing)  and use these  values 
for segmentation. More  recent variations  compute lo- 
cal histograms of the  filter  outputs. Such  approaches 
are  haunted by the  problem of selecting  an  appropri- 
ate scale of the  analysis window,  be it  the  standard 
deviation of the  smoother or the size of the window 
for local histogram  computation.  The  larger  the win- 
dow,  the  more  accurate  the local statistics,  but  the 
coarser the  resolution of the final segmentation.  Our 
methods works  directly  on  the  texture  features, not. 
on their local statistics. Of course, we need to select 



a  scale for the  “observation  window”,  but  this value 
does  not affect the  resolution of the final class assign- 
ment, which is performed  using  unsmoothed  posterior 
distributions. 

A drawback of our  technique is that clusters  are 
grouped by the  “hard” scheme of (2).  This  can  cause 
problems if the  same  cluster  appears in two or more 
texture classes. A  more  general  grouping  solution, 
which is the  object of current  research,  would define 
the following mixture  model: 

The  parameters of (13)  could  be  estimated  from  the 
original  mixture  model (1) by maximizing  the corre- 
sponding  model  descriptiveness. 
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